

SUCCESS KEY TEST SERIES
X (English)
(Worksheet -1 Math-2 (Ch-1,2))
Mathematics Part - II-

Q. 1 A Answer the following.

1

In $\triangle \mathrm{MNP}, \angle \mathrm{MNP}=90^{\circ}$, $\operatorname{seg} \mathrm{NQ} \perp \operatorname{seg} \mathrm{MP}, \mathrm{MQ}=9$, $Q P=4$, find $N Q$.
$2 \triangle A B C \sim \triangle P Q R . A(\triangle A B C): A(\triangle P Q R)=16: 25$. If $B C=2 c m$, find $Q R$.

B Multiple Choice Questions

1 If in $\triangle P X Y, X Y \| Q R I(P Q)=3$ units $I(P R)=4$ units, $I(Y R)=5$ units. Find $I(P X)$.

a. 5.75 units
b. 6.25 units
c. 7 units
d. 6.75 units

2 Find BC. if diameter of circle is 10 cm and $\mathrm{AC}=6 \mathrm{~cm}$

a. 7 cm
b. 10 cm
c. 9 cm
d. 8 cm

1 From the information given in the figure, find $P R$ and $P Q$.

In $\triangle \mathrm{PQR}, \angle \mathrm{Q}=90^{\circ}, \angle \mathrm{P}=60^{\circ}$, and $\angle \mathrm{R}=30^{\circ}$.
By the theorem of $30^{\circ}-60^{\circ}-90^{\circ}$ triangle,
QR = \qquad PR
... (Side opposite to 60°)
$\therefore \quad 6 \sqrt{3}=\frac{\sqrt{3}}{2} P R$
$\therefore \quad \mathrm{PR}=6 \sqrt{3} \times \frac{2}{\sqrt{3}}$
$\therefore \quad \mathrm{PR}=$ \qquad
$P Q=\frac{1}{2} P R$
$\therefore \quad P Q=\frac{1}{2} \times 12 \mathrm{~cm}$
$\therefore \quad P Q=$ \qquad
PR = \qquad ; $P Q=$ \qquad
2

In figure $X Y|\mid$ seg $A C$. If $2 A X=3 B X$ and $X Y=9$. Complete the activity to find the value of $A C$.
$2 A X=3 B X \quad \therefore \quad \frac{A X}{B X}=\square$
$\frac{\mathrm{AX}+\mathrm{BX}}{\mathrm{BX}}=\frac{\square+\square}{\square} \quad \ldots$ by componendo
$\frac{\mathrm{AB}}{\mathrm{BX}}=\square$
$\triangle B C A \sim \triangle B Y X$
$\therefore \quad \frac{B A}{B X}=\frac{A C}{X Y}$
... \square test of similarity.
... corresponding sides of similar triangles.
$\therefore \quad \square=\frac{\mathrm{AC}}{9} \quad \therefore \quad \mathrm{AC}=\square \ldots$ from (I)
B Attempt the following.(Any Two)

In the given figure, $A B C D$ is a trapezium in which $A B \| D C$. If $2 A B=3 D C$, find the ratio of the areas of $\triangle A O B$ and $\triangle C O D$.
$\frac{\mathrm{AB}}{\mathrm{DC}}=$ \qquad
To find : area $\triangle A O B$: area of $\triangle C O D$
Proof: In $\triangle A O B$ and $\triangle C O D$

$$
\begin{array}{rll}
& \angle \mathrm{AOB}=\angle \mathrm{COD} & \\
& \angle \mathrm{OAB}=\overline{\text { (alternate angles) }} \\
\therefore & \triangle \mathrm{AOB} \sim \triangle \mathrm{COD} & \\
\therefore & \frac{\text { area } \triangle \mathrm{AOB}}{\text { area } \triangle \mathrm{COD}}=\square=\frac{3^{2}}{2^{2}}= &
\end{array}
$$

Ratio in the areas of $\triangle A O B$ and $\triangle C O D$ \qquad

2 In $\triangle A B C, \angle A C B=90^{\circ}$, seg $C D \perp$ seg $A B$.
seg DE \perp seg CB.
Show that : $C D^{2} \times A C=A D \times A B \times D E$

In $\triangle \mathrm{ABC}$,
$\angle A C B=90^{\circ}$
$\operatorname{seg} C D \perp \operatorname{seg} A B$
$\therefore \quad C D^{2}=$ \qquad
$\begin{array}{ll}\therefore \quad & C D^{2}= \\ & \text { In } \triangle D E B \text { and } \triangle A C B\end{array}$
$\angle D E B \cong \angle A C B$
... (Each angle is 90°)
$\angle \mathrm{B} \cong \angle \mathrm{B}$
\cdots …
$\therefore \quad \triangle \mathrm{DEB} \sim \triangle \mathrm{ACB}$
... (A-A test of similarity)
$\therefore \quad \frac{\mathrm{DE}}{\mathrm{AC}}=$ \qquad
$\therefore \quad D E \times A B=$ \qquad
$\therefore \quad \mathrm{AD} \times \mathrm{DE} \times \mathrm{AB}=$ \qquad (Multiplying both sides by AD)
$=C D^{2} \times A C$ [from (1)]
i.e. $C D^{2} \times A C=A D \times A B \times D E$
$3 \triangle \mathrm{ABD}$ is a triangle in which $\angle \mathrm{A}=90^{\circ}$ and $\operatorname{seg} \mathrm{AC} \perp \operatorname{seg} \mathrm{BD}$ Show that
i) $A B^{2}=B C \cdot B D$
ii) $A D^{2}=B D . C D$
iii) $A C^{2}=B C . C D$

i) $\ln \triangle A B D$,

$$
\begin{align*}
& \angle \mathrm{BAD}=90^{\circ} \tag{Given}\\
& \text { seg } \mathrm{AC} \perp \text { hypotenuse } \mathrm{BD}
\end{align*}
$$

$\therefore \quad$ In $\triangle B C A \sim \triangle A C D \sim \triangle B A D$... (Similarity in Right-angled triangle)
ii) $\triangle \mathrm{BCA} \sim \triangle \mathrm{BAD}$
... (From (i))
$\therefore \quad \frac{B C}{B A}=$ \qquad
$\therefore \quad=B C . B D$
iii) $\triangle A C D \sim \triangle B A D$
... (From (1))
$\therefore \quad \frac{\mathrm{CD}}{\mathrm{AD}}=$
$\therefore \quad=B D . C D$
iv) $\triangle \mathrm{BCA} \sim \triangle \mathrm{ACD}$
... (From (1))
$\therefore \quad=\frac{\mathrm{AC}}{\mathrm{DC}}$
... (c.s.s.t)
$\therefore \quad A C^{2}=$ \qquad
Q. 3 Answer the following (Any Two)

1

Given below is a triangle and lengths of its line segments. Identify in the figure if, ray PM is the bisector of \angle QPR.
$2 \angle Q P R=90^{\circ}$, seg $P M \perp$ seg $Q R$ and $Q-M-R, P M=10, Q M=8$, find $Q R$.

3 In trapezium $A B C D$, side $A B|\mid$ side $P Q| \mid$ side $D C, A P=15, P D=12, Q C=14$, find $B Q$.

Q. 4 Answer the following(Any One)

1 Prove that:
"If a line parallel to a side of a triangle intersects the remaining sides in two distinct points, then the line divides the sides in the same proportion."

2 In the figure, $\square P Q R V$ is a trapezium in which seg $P Q \|$ seg $V R S R=4$ and $P Q=6$
Find: VR

