

Q.1 A Answer the following.

B Multiple Choice Questions

1 If in \triangle PXY, XY || QR I(PQ) = 3 units I(PR) = 4 units, I(YR) = 5 units. Find I(PX).

a. 5.75 units b. 6.25 units c. 7 units d. 6.75 units

2 Find BC. if diameter of circle is 10 cm and AC = 6 cm

a. 7 cm b. 10 cm c. 9 cm d. 8 cm

Q.2 A Attempt the following (Any One)

B Attempt the following.(Any Two)

In the given figure, ABCD is a trapezium in which AB \parallel DC. If 2AB = 3DC, find the ratio of the areas of \triangle AOB and \triangle COD.

 $\frac{AB}{DC}$ = _____

To find : area $\triangle AOB$: area of $\triangle COD$ Proof : In $\triangle AOB$ and $\triangle COD$

 $\angle AOB = \angle COD$ $\angle OAB = _ (alternate angles)$ $\therefore \quad \triangle AOB \sim \triangle COD$ $\therefore \quad \frac{\text{area } \triangle AOB}{\text{area } \triangle COD} = _ = \frac{3^2}{2^2} = _$

Ratio in the areas of △AOB and △COD____

2 In △ABC, ∠ACB = 90°, seg CD ⊥seg AB. seg DE ⊥ seg CB. Show that : $CD^2 \times AC = AD \times AB \times DE$

In ∆ABC, ∠ACB = 90°

- seg CD ⊥ seg AB... (Given)∴ $CD^2 = _$... (1) (Geometric mean property)In △DEB and △ACB... (1) (Geometric mean property)∠DEB ≅ ∠ACB... (Each angle is 90°)∠B ≅ ∠B... (A-A test of similarity)∴ $\Delta DEB \sim \triangle ACB$... (A-A test of similarity)
- $\therefore \quad \frac{DE}{AC} = \underline{\qquad} \qquad \dots (c.s.s.t)$
- ∴ DE × AB = _____
- $\therefore AD \times DE \times AB = _ (Multiplying both sides by AD)$ $= CD^2 \times AC \qquad [from (1)]$ i.e. $CD^2 \times AC = AD \times AB \times DE$
- 3 △ABD is a triangle in which ∠A = 90° and seg AC ⊥ seg BD Show that i) $AB^2 = BC.BD$

Q.3 Answer the following (Any Two)

1

Given below is a triangle and lengths of its line segments. Identify in the figure if, ray PM is the bisector of \angle QPR.

2 \angle QPR = 90°, seg PM \perp seg QR and Q-M-R, PM = 10, QM = 8, find QR.

3 In trapezium ABCD, side AB || side PQ || side DC, AP = 15, PD = 12, QC = 14, find BQ.

Q.4 Answer the following(Any One)

1 Prove that :

"If a line parallel to a side of a triangle intersects the remaining sides in two distinct points, then the line divides the sides in the same proportion."

2 In the figure, □PQRV is a trapezium in which seg PQ || seg VR SR = 4 and PQ = 6 Find : VR

