Success Key Test Series	SUCCESS KEY TEST SERIES X- Semi English (Unit Test- 3 Math-2 (Ch- 5, 6)) Mathematics Part - II-	DATE:			
		TIME: 1 hrs			
		MARKS: 20			

Q. 1 A) Choose the correct alternative.

1) Find the slope of the lines whose inclinations are -30°
a. $\frac{1}{\sqrt{3}}$
b. 1
c. not defined
d. $\sqrt{3}$
2) If θ is an acute angle of a right tringle, then the value of $\sin \theta \cos \left(90^{\circ}-\theta\right)+\cos \theta \sin \left(90^{\circ}-\theta\right)$ is
a. 0
b. $2 \sin \theta \cos \theta$
3.1
4. $2 \sin ^{2} \theta$
B) Solve the following questions. (Any one)
1) Angles made by the line with the positive direction of X-axis are given. Find the slope of these lines. 90°
2) If $\sin \theta=\frac{15}{17}$, find the value of $\cos \theta$, (θ is an acute angle)
Q. 2 A) Complete the following Activities. (Any two)
3) Prove that : $(\sec \theta-\cos \theta)(\cot \theta+\tan \theta)=\tan \theta \sec \theta$.

LHS $=(\sec \theta-\cos \theta)(\cot \theta+\tan \theta)$

$$
\begin{array}{rlr}
& =\left(\frac{1}{\cos \theta}-\cos \theta\right) & {\left[\sec \theta=\frac{1}{\cos \theta}, \cot \theta=\frac{1}{\tan \theta}\right]} \\
& =\ldots\left(\frac{1+\tan ^{2} \theta}{\tan \theta}\right) & \\
& =\left(\frac{\sin ^{2} \theta}{\cos \theta}\right)\left(\frac{\sec ^{2} \theta}{\tan \theta}\right) & \ldots\left[\sin ^{2} \theta+\cos ^{2} \theta=1,1+\tan ^{2} \theta=\sec ^{2} \theta\right] \\
& =\frac{\sin ^{2} \theta}{\cos \theta} \times \ldots\left[\tan \theta=\frac{\sin \theta}{\cos \theta}\right] \\
& =\frac{\sin ^{2} \theta}{\cos \theta} \times \frac{1}{\cos \theta \times \sin \theta} & \\
& =-\quad \times \frac{1}{\cos \theta} & \\
& =\tan \theta \times \frac{\text { RHS }}{} &
\end{array}
$$

2) Find the coordinates of the midpoint of the line segment joining $P(0,6)$ and $Q(12,20)$.

Let, $\quad \mathrm{P} \equiv(0,6) \equiv\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$,
$Q \equiv(12,20) \equiv$ \qquad
Let, $\quad R \equiv(x, y)$ is the midpoint of seg $P Q$
$\therefore \quad$ By midpoint formula

$$
\begin{array}{rlr}
x & =\frac{x_{1}+x_{2}}{2} & , y= \\
& =\frac{0+12}{2} & , \quad=\frac{6+20}{2}
\end{array}
$$

$\therefore \quad \mathrm{R} \quad \equiv$
$\therefore \quad$ The coordinates of midpoint of seg PQ are \qquad
3) Angles made by the line with the positive direction of X-axis are given. Find the slope of these lines. 45°

Here $\theta=45^{\circ}$
$\therefore \quad$ slope of the line $=$ \qquad

$$
=\tan
$$

$=$ \qquad
B) Solve the following questions. (Any one)

1) $A(h,-6), B(2,3)$ and $C(-6, k)$ are the co-ordinates of vertices of a triangle whose centroid is $G(1$, $5)$. Find h and k.
2) Find the centroids of the triangles whose vertices are given below.
$(3,-5),(4,3),(11,-4)$

Q. 3 Solve the following questions. (Any one)

1) If $\tan \theta=\frac{3}{4}$, than find the values of $\sec \theta$ and $\cos \theta$.
2) A storm broke a tree and the treetop rested on ground 20 m away from the base of the tree, making an angle of 60° with the ground. Find the height of the tree.
3) Find the point on the X-axis which is equidistant from $A(-3,4)$ and $B(1,-4)$.

Q. $4 \quad$ Solve the following questions. (Any one)

1) Determine whether the points are collinear.
$A(1,-3), B(2,-5), C(-4,7)$
2) Find the equation of the line passing through the point of intersection of the line $4 x+3 y+2=0$ and $6 x+$ $5 y+6=0$ and the point of intersection of the lines $4 x-3 y-17=0$ and $2 x+3 y+5=0$.

Q. 5 Solve the following questions. (Any one)

1) Find the coordinates of point P if P divides the line segment joining the points.
$A(-1,7)$ and $B(4,-3)$ in the ratio $2: 3$.
2) Show that $A(-4,-7), B(-1,2), C(8,5)$ and $D(5,-4)$ are the vertices of a rhombus $A B C D$.
